Technology Front
High Performance SiP Solution for Precision-Sensing in Portable Medical Devices
Published: Sep 16,20141978 Read
ON Semiconductor introduces Struix, a semi-customizable System-in-Package (SiP) solution for precision sensing and monitoring in a variety of mobile medical electronics including glucose monitors, heart rate monitors and electrocardiogram analyzers.
New Ultra-Low Power Precision Operational Amplifiers for IoT Applications
ON Semiconductor has introduced a family of affordable, precision CMOS operational amplifiers (op amps) that deliver zer...
New 2.1 Megapixel CMOS Image Sensor Delivers 1080p HDR Video for Security Cameras
ON Semiconductor has introduced its latest high performance CMOS image sensor targeted for use in advanced video security cameras...
Struix, which means “stacked” in Latin, utilizes advanced die stacking technology to integrate a custom-designed analog front-end (AFE) on top of an industry-leading 32-bit Application Specific Standard Product (ASSP) microcontroller (ULPMC10), to form a complete miniature system.
By using standard and customizable components, Struix offers medical device manufacturers the design flexibility required to create unique medical sensor interface applications while improving time-to-market and cost-effectiveness.
“Advanced stacking technology enables Struix to achieve greater system integration and occupy less board space in medical devices than standalone solutions,” said Michel De Mey, senior director of consumer health solutions at ON Semiconductor.
“ON Semiconductor’s SiP approach reduces design time, development risks and the costs associated with fully customized solutions. Design flexibility is further enhanced because the solution’s ULPMC10 microcontroller can be easily updated with future microcontrollers from ON Semiconductor, without replacing the AFE, which is subject to FDA re-certification.”
The ULPMC10 microcontroller element of Struix processes signals using an industry-leading 32-bit ARM Cortex-M3 core capable of running up to frequencies of 30 megahertz (MHz). The microcontroller incorporates 512 kilobytes (kB) on-chip Flash memory and 24 kB SRAM memory to store critical program and user data.
Designed to improve battery life in portable devices, ULPMC10 offers superior performance with minimal dynamic and static power demands. Through on-chip charge pump-based power conversion and regulation, the microcontroller can operate at a current consumption of less than 200 µA/MHz. While in standby mode, current consumption remains below 500 nanoamperes (nA), a critical parameter for low-duty cycle medical devices.
The system’s advanced power management subsystem monitors the device for fail-safe operation with a wide variety of battery voltages without requiring external components. The microcontroller also includes a12-bit analog-to-digital converter with three multiplexed inputs, a real-time clock, a phase-locked-loop, and a temperature sensor.
To simplify product development, ON Semiconductor offers a comprehensive and easy-to-use suite of development add-ins for IAR Systems to support the ULPMC10 microcontroller, including CMSIS based software interfaces.