Taipei, Friday, Apr 19, 2024, 23:54

News

Mitsubishi Electric Develops Accurate Circuit Simulation Technology for SiC-MOSFETs

Published: Jul 09,2020

Mitsubishi Electric announced today that it has developed a highly accurate Simulation Program with Integrated Circuit Emphasis (SPICE) model to analyze the electronic circuitry of discrete power semiconductors. The technology is deployed in the company’s “N-series 1200V” SiC-MOSFET* samples of which will begin shipping in July.

More on This

Mitsubishi Electric to Launch 80x60 pixel Thermal Diode Infrared Sensor

Mitsubishi Electric Corporation announced that its Mitsubishi Electric Diode InfraRed (MelDIR) sensor lineup will introd...

Mitsubishi Electric to Launch “EcoAdviser” AI-enabled Energy Software

Mitsubishi Electric Corporation (announced today that the company’s new EcoAdviser data-analysis and diagnostic softwa...

The model simulates high-speed-switching waveforms almost as well as actual measurements, on a level of accuracy currently believed to be unmatched in the industry, which is expected to lead to more efficient circuit designs for power converters. Going forward, Mitsubishi Electric expects to add several temperature-dependent parameters to enable its SPICE model to work at high temperature. The company presented the new model** on July 8 at the International Conference on Power Conversion and Intelligent Motion (PCIM Europe 2020), which was held online on July 7 and 8.

The SiC-MOSFET controls the current (drain current) flowing from the drain electrode to the source electrode depending on the voltage that is imposed on the gate electrode. The MOSFET has parasitic capacitances that accumulate charges and determine switching speed. When a voltage is applied to the electrodes of the device, the capacitance values change due to changes in distance between the layers that accumulate the positive and negative charge changes, resulting in changes in the switching speed. When the distance between layers decreases, the capacitance value increases and the switching speed decreases, and conversely, when the distance between layers increases, the capacitance value decreases and the switching speed increases.

CTIMES loves to interact with the global technology related companies and individuals, you can deliver your products information or share industrial intelligence. Please email us to en@ctimes.com.tw

604 viewed

Most Popular

comments powered by Disqus